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Abstract— The motion of Brown:an particles in the vicinity of a fluid interface is studied by considering
the spatial modification of the hydrodynamic mobility due to the direct hydrodynaniic interactions between

the particles and the interface. The analysis determines, for a simiple model system, the conditions under
which the simple Fickian form of the diffusion equation can be obtained in the presence of an interface. In ad-
dition, the theory shows that the diffusivity tensor can be evaluated from a knowledge of the mobility tensor

for steady motion of a particle in Stokes flow.

INTRODUCTION

The irregular random motion of small particles sus-
pended in liquids, known as ‘Brownian rnotion’, was
first described by the English botanist, Robert Brown
in 1828. Contraversy concerning the origin of the
Brownian motion persisted for many decades and it
was not until 1905 that Albert Einstein [1] first advanc-
ed a satisfactory theory, and eventually cenfirmed the
molecular nature of matter by relating the Brownian
motion to the thermal fluctuations of molecules in the
surrounding fluid.

Recent years have witnessed an increasing amount
of interest in the description of Brownian diffusion
near a rigid wall or a fiuid-fluid interface [2-5). Treat-
ments of this kind are designed to provide a theoretical
basis in terms of molecular properties, for understan-
ding and predicting the various transport coefficients
that enter into the description of the same processes
from a macroscopic point of view. Of considerable im-
portance is prediction and interprelation ¢f interphase
mass-transfer rates in liquid-liquid systems, which are
usual in many industrial operations, liquid-liquid ex-
traction being a primary example. However, little is
known about the effects of a fluid interface on the imno-
tion of Brownian particles. Indeed, our objective in the
present study is to investigate the effect of the presence
of an interface on the motion of Brownian particles by
employing the general methods of statistical physics in
conjunction with fundamental fluid mechanics. 1t is, of
course, obvious from the point of view of nonequilibr-
ium thermodynamics that the interface will fluctuate
around equilibrium due to the thermal agitations of
surrounding fluid molecules, and thcse random
changes in the interface shape produce random mo-
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tions of Brownian particles in the vicinity of the inter-
face. Further, due to the impulsive motion of a Brow-
nian particle the interface exhibits also a continuously
changing shape which depends on the prior history of
the particle motion and the interface shape at earlier
times. Although the interface deformation is small,
resulting from infinitesimal displacement of the Brow-
nian particle, the displacenment of the particle by inter-
face relaxation back toward equilibrium may be of the
same order of magnitude as that initially caused by the
random inpulse [6].

In the present study, we consider a relatively sim-
ple model systen: in which the interface remains flat
non-deforming in spite of the arbitrary motion of parti-
cle in order to explore the validity of Einstein’s diffu-
sion theory for Brownian particles near an interface.
The ‘statistical-mechanical’ model underlying the
theoretical development consists of either spherical or
elongated slender particles wholly immersed in one of
the two contiguous fluids. The model is based upon
the assumption of short-range attractive or repulsive
forces exerled by the interface on a Brownian particle
proximate to it. The analysis is carried out using a
Langevin-type stochastic equation for the Brownian
particles, and determines the conditions under which
the normal macroscopic interfacial transport theory is
valid for the model systent, wherein a complete des-
cription of solute mass-transfer is possible down to the
fine scale of hydrodynamic and physicochemical inter-
actions between the solute (i.e., Brownian particles)
and the solvent-solvent interface. We begin, however,
with the theoretical framework which has been pre-
viously proposed for analysis of Brownian motion in
an unbounded single-fluid domain. Following that we
proceed to a detailed analysis of Brownian motion in
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the presence of a fluid interface.

THEORY OF BROWNIAN MOTION IN AN
UNBOUNDED DOMAIN

In his pioneering paper, Einstein [1] showed that
the irregular motion of uncharged noninteracting par-
ticles can be modeled as a diffusion and thus the pro-
bability distribution Ax) of Brownian particles in the
configuration space X must be governed by the so-
called Einstein-Smoluchowski diffusion equation

3P
Y

in which D denotes the diffusion coefficient tensor,
and ¢ is the time variable. In deriving (1), Einstein ass-
umed that the movements of a Brownian particle
could be idealized as a Markoff process, in the sense
that the course which a Brownian particle will take de-
pends only on the instantaneous values of its physical
parameters and is entirely independent of its whole
previous history. Utilizing the solution of the diffusion
equation (1) with appropriate initial and boundary
conditions, Einstein also derived the relaticnship bet-
ween the diffusion coefficient D and the mean square
displacement < | Ax|?> of a Brownian sphere:

<|Ax|*>=6DAt {2)

The mean square displacement is therefore propor-
tional to the time interval Af. This general relationship,
(2), in combination with the velocity correlation func-
tion plays an important role in determining the diffu-
sion coefficient.

The diffusion coefficient in (1) and (2), according to
Einstein's theory, can be determined from the mol-
ecular-kinetic theory of heat, employing only thermo-
dynamic concepts and the properties of systems in dy-
namic equilibrium. For a suspension of uncharged,
noninteracting particles with spatial number-density
gradient, the translational diffusion flux at equilibrium
is evidently the same as the convective flux resulting
from the application to each particle of a steady ther-
modynamic force which is due solely to the existence
of osmotic pressure. As far as osmotic pressure is con-
cerned, solute molecules and suspending Brownian
particles are identical in their behavior at great dil-
ution. According to the van't Hoff's law, the osmotic
pressure p® in dilute solution obeys the relationship,
p¥=cxy T, in which ¢ denotes the number-density of
solute particles that may be regarded as the probability
density P(x) in the configuration space of a dilute sus-
pension. Here, x5 is the Bolizmann constant and 7 is
the absolute temperature. Then, the thermodynamic
force, F*, as a consequence of the concentration gra-
dient of Brownian particles, can be derived from the

=y [D:VP(x)) (1)
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osmotic pressure and is given by
Fo'=— x, TVIn{P(x)} (3)
Thus, the corresponding convective flux is equal to

-Px) M [x, TVIn{ AX)). This convective flux is bal-
anced by the diffusion flux

j»==D -V D(x) (4)

with the diffusivity tensor D related to the hydrody-
namic mobility tensor M for a particle by the Nernst-
Planck-Einstein relation:

D=x,TM. (5)

This classical expression for diffusivity of uncharged
particles has been verified experimentally in many
types of diffusion. It is noteworthy that Einstein’s ap-
proach employs only the concept of a thermodynamic
driving force on the particle as representation of the di-
ffusive effect of Brownian motion without taking into
account the dynamics of the particle motion in the sus-
pending fluid.

Brownian motion of individual particles in a single
unbounded fluid domain can also be modeled as a dif-
fusion process in a dilute suspension by a ‘rigorous’
generalization of the Liouville equation (7] of classical
dynamics to include Brownian motion. This approach
to Brownian motion begins with a consideration of the
equation of motion for a suspended particle, i.e., the
Langevin equation [8}:

U _g.utam (6)

dt
where U denotes the particle velocity, g is the hydro-
dynamic resistance tensor and A(f) the random force
on the particle arising from the thermal agitations of
surrounding fluid molecules. According to the Lange-
vin equation, the influence of the surrounding medi-
um on the motion of Brownian particle can be split in-
to two parts: first, a very rapidly fluctuating part A(f)
with a molecular motion time scale,7{={0sec for
water); and, second, a systematic hydrodynamic fric-
tion part -8-U associated with a characteristic time
scale Tvp =4 7' (==10 7 sec for a free sphere in water).
Assuming that r, € 7,, <O(1), as is characteristic of
Brownian motion, we can introduce time intervals 4!
in which the physical parameters such as position, or-
ientation and velocity of the Brownian particle change
by infinitesimal amounts, while the number of fluctua-
tions arising from collisions with surrounding fluid
molecules remains extremely large:

77 € 1op AT L0, (7
That a transformation of Liouville equation into the fa-
mous Fokker-Planck equation should be possible un-
der these circumstances is apparent when we recall
that the Brownian movements in a time interval 4t sa-
tisfying (7) can be regarded as a Markoff process so that
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the probability distribution AU +4U, x+Ax, {+4¢) in
the phase space governing the probability of occurr-
ence of U+A4U at time ¢t+A¢ can be derived from the
distribution (U, x, #) at the present time and a know-
ledge of the transition probabilityI"(U, AU) that U suf-
fers an increment AU in the time interval4t. According
to the Langevin equation (6)

t+at
av=-g-Uart [ Al ds, ax-U - A

(&)
in which the integral denotes the net acceleration aris-
ing from fluctuations that a Brownian particle suffers
in the time interval Af. From the molecular-kinetic
theory, the probability distribution of the integral must
be Maxwellian and thus it follows at once that the
transition probability has the Maxwellian distribution
in terms of AU+ 8-UAt. With condition (7), it can also
be expected that a Maxwell-Boltzmann distribution of
the velocity will be established at all points after time
intervals At as the result of superposition of a large
number of random accelerations caused by collisions
with surrounding molecules [9,10]. Thus, the Fokker-
Planck equation in the phase space (U, x) can be ap-
plied to the configuration space, x, independently of
the velocity space, U, provided that we are interested
only in the time intervals At. Then, integration of the
Fokker-Planck equation over the velocity space U pro-
vides us the Einstein-Smoluchowski equation (1), i.e.,
differential equation for the probability distribution,
PAx), of Brownian particles in the configuration space,
x, and yields the same diffusivity coefficient tensor of
(5) as Einstein's thermodynamic approach.

It will be evident, however, that the Langevin eg-
uation (6) with the instantaneous friction law deter-
mined from the steady Stokes equation gives only a
partial picture of the effect of thermal fluctuations in
the system and predicts a rapid exponential decay on
the time scale 87! in the velocity correlation function.
The first indication of a deficiency in the Langevin eq-
uation came in numerical simulations of the molecular
motions in liquids which produced velocity correl-
ations of spherical particles with a Jong ‘tail’ decaying
as t ~¥2 rather than an exponential decaying as pred-
icted by (6) {11, 12]. Recently, several analyses [13,
14], which allow for the distribution of thermal iluctua-
tions throughout the fluid, have predicted correctly the
full velocity correlation as well as the diffusion coeffi-
cient tensor of (3). Linearity is, however, preserved in
the governing differential equations for the fluid mo-
tion, because the velocities remain small enough to
render the convective terms negligible. 1t is important
to realize Lhat both the classical Langevin miethod with
g deternmined from the steady Stokes equat.on and the
above corrected approaches lead to exactly the Einste-

in-Smoluchowski diffusion equation (1) with the same
diffusion coefficient tensor (5), provided the condition
(7) is satisfied.

BROWNIAN MOTION NEAR A PLANE FLUID
INTERFACE

Let us begin by considering a model system consis-
ting of Brownian particles dispersed in a viscous in-
compressible Newtonian fluid in the semi-infinite do-
main -co <x,< 0, bounded by a plane fluid interface
at x;=0 (cf.Fig. 1). In the region x;>0, we suppose
that there is a second unbounded fluid. The viscosity
ratio A :'ff—z' between the two fluids is assumed to be ar-
bitrary. In addition, we assume that the interface re-
mains flat and non-deforming.

The difference between the problem discussed in
this section and the classical problem of Brownian mo-
tion in an unbounded domain is the possible existence
of a short-range force of interaction (attractive or repul-
sive), F,,(x) which we assume acts between the particl-
es and the interface, and the dependence of the hydro-
dynamic mobility M[i.e. (mg)™'; m is the particle
mass] on the configuration of the particle relative to
the interface (i.e., its position, and if the particle is non-
spherical, its orientation), as a consequence of hydro-
dynamic interactions.

Application of the so-called ‘thermodynamic ap-
proach’ that was outlined in the preceding section
shows that the same relationship holds between the
mobility and the diffusion tensors as in (5) even in the
presence of a flat interface in the absence of a physico-
chemical interaction force. Further, this approach
shows that the relevant hydrodynamic mobility is still
that for steady creeping motions.

The presence of a short-range physicochemical att-
raction (or repulsion) between the particles and the in-
terface will generate steep spatial gradients in the parti-
cle number density, Ax). The resulting nonuniform
hydrodynamic interactions between particles will also
lead to nonisotropic and spatially dependent mobility.
These indirect interface effects owing to particle-parti-
cle hydrodynamic interactions will contribute to non-
isotropy and spatial dependence of the diffusivity. Fur-
thermore, although successful in determining the rel-
evant diffusion coefficient of Brownian particles near
an interface in the absence of a physicochemical inter-
action, the thermodynamic approach cannot provide
any conditions for validity of the normal diffusion
theory in the presence of the physicochemical attrac-
tion (or repulsion).

Let us thus turn to the fundamental statistical ap-
proach in which the governing differential equation
for the probability density in the phase space (U, x) is
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the Liouville equation, in order to explore the condi-
tions for validity of the diffusion process defined by (4)
and (5) in the presence of a flat fluid-fluid interface.
Compared to the case of a single unbounded fluid do-
main, the Langevin equation is modified by the inter-
face in that the hydrodynamic mobility is dependent
upon proximity to the interface (and is anisotropic
even for spherical particies) due to the direct and indir-
ect hydrodynamic interaction effects that were descri-
bed above, and by the existence in some cases of an
interface-induced physicochemical force field F_ (x):

e —8(% - UHFa (0 A (D) 9)
When one observes the process of Browniar motion in
the averaging time intervals At satisfying the condition
of(7), the stochastic movements of a Brownian particle
can be regarded as a Markoff process. Further, if the
length sclaes characteristic of variations in 8 (x) and
F, (x) are sufficiently large relative to the mean dis-
placement v<JAx|? > of a Brownian particle in the time
interval At the physical parameters g(x) and F (x) can
be approximated as constant during At. In effect, there
is the condition of a fixed ‘configuration’ over the aver-
aging period, 4t, in which the increments Ax and AU in
position and velocity of a typical particle are given by

AU==- (8- U=Fo x)ar+ [ Ats ds

{10)
with Ax=U At The integral in (10) represents the net
acceleration that a Brownian particle may suffer dur-
ing At due to the thermal agitations of surrounding
molecules. We now assert that the invariance of the
Maxwell-Boltzmann distribution requires that the pro-
bability of occurrence of different values for the net
acceleration be governed by the Maxwell distribution
function, and it allows that the transition-probability
distribution I'(U, 4AU) is Maxwellian in terms of
AU+ [p(x).U-F (x)) At.

A conservative estimate of the length scales of var-
iations in g(x) and F,(x), i.e., /, and /;, respectively,
which are allowable for (9} and (10) to be valid, can be
obtained by using the Stokes resistance for a particle at
large distances from the interface, 8. The resulting con-
dition for the fixed configuration is

lET
z,,.1,>>—ﬂ"L =0 (Y <TAX]TS). (11)

For an extremely short-range interaction force F_(x),
the condition (11) may not always be satisfied for the
very sniall Browrian particles (i.e., large solute mol-
ecules), for which the mean-square displacements in
the averaging time interval 4¢ can be quite large. If we
adopt (10) and (11) a generalized Einsfein-Smiol-
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uchowski equation governing the time evolution of the
local number density Ax) in the configuration space
can be derived from the Liouville equation via the
Fokker-Planck equation by averaging the probability
distribution AU, x) in the phase space over the time
interval A¢ satisfying the condition (7):

oP(x)
at

=V (DE}-VPX) -M (x)-F,, (x) P(x})
(12)

in which the mobility and diffusivity tensors M(x) and
D(x) refer (o a torque-free particle and are related by
(5). Thus, the simple Fickian form of the diffusion eq-
uation is obtained in the presence of a flat fluid-fluid
interface under the conditions (7) and (11), and the dif-
fusivity tensor can be calculated from a knowledge of
the mobility tensor for steady motion of a freely rota-
ting particle in the vicinity of a plane interface. In the
next section, for an illustrative purpose, we evaluate
the diffusion tensor for either spherical or elongated
slender particles near a plane interface.

DISCUSSIONS

Equations of motion for a rigid particle of arbitrary
shape in creeping flow can be expressed in general
terms, provided the interface remains flat, by defining
the so-called translational resistance tensor K, the ro-
tational resistance tensor K, , and the coupling tensor
K. [15]. Two fundamental relations exist between the
translational and rotational velocities and the force
and torque in terms of these tensors:

F=K; - U+K! - Q {132}

T=K: - U+Kq - Q (13b)
where F and T are the total hydrodynamic force and
torque, and U and Qare the translational and rota-
tional velocities, respectively. The various components
of these tensors are intrinsic geometric properties of
the particle and have already been determined for
both a spherical and a slender rod-like particles [16,
17].

In accordance with the usual definition of mobility
as the ‘velocity’ imparted to the particle per unit 'force’,
we are led to define a mobility tensor M by means of
the expression:

U=M-F {14a)
where M is given explicitly by
M=K, —-K! Ki'- Ko )™! (14b)

for a freely rotating torque-free particle.

On the basis of the Nernst-Planck-Einstein equa-
tion, it is natural to define a diffusivity tenscr by the
relation (3).
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Fig. 1. Definition sketch for a planar interface. The in-
stantaneous coordinates of the center of the
Brownian sphere are X=(X,X5,X3) and the points
lying in a plane parallel to the interface are con-
veniently represented by the planar position
veetor X, =x,e;+xqe,.

D=XBTM=XBT[KT_KC:' R'I'KC]-‘ (15)

For spherical particies, each component of the mobili-
ty tensor M can be determined from the solution of
Yang and Leal [17] and the diffusion tensor is thus
given by

i 0 07
D=0 Dn 0 (16a)
0 0 Dl

For a given coordinate system as in Figure 1, it is ob-
vious that

‘D1 = Do (16b)
The components Di/‘ are functions of the particle posi-
tion relative 1o the interface as a consequence of spa-
tially modified mobility. In the case of spherically iso-
tropic particles in an unbounded single-fluid domain,
K-=0, the present result (16) reduces to the conven-
tional diffusivity tensor

—xel a7)

6rua

where s the viscosity of the surrounding fluid, @ is

the sphere radius and I denotes the idemfactor. The

diffusion tensor (17) has been shown to have the phy-
sical significance of real diffusivities.

In order to illustrate the qualitative nature of the
hydrodynamic interaction effect, the components 3,
and D, based on the approximate singularity-method
solution of Yang and Leal [17] are plotted in Figure 2
as a function of the distance d from the interface for
A=0, 1 and ~. The magnitude of diffusion coefficient,
D, is either increased or decreased depending on the
viscosity ratio A owing to the presence of an interface.

It will be noted from Figure 2 that the effect is a strong
function of the position relative to the interface arising
form the spatial modification of hydrodynamic mobili-
ty. The decrease in the diffusivity coefficient D, (or
D,,) is established primarily as a consequence of the
fact that a much more viscous fluid above the interface
yields a small slip velocity on the interface and thus
higher velocity gradient above the sphere than below
it. The ‘reversal’ in the diffusivity coefficient when the
upper fluid is much less viscous than the lower fluid
results primarily from the existence of a substantial
slip velocity on the interface, and a resultant velocity
gradient above the sphere which is smaller than be-
low. However, the diffusivity coefficient Dy, is decre-
ased relative to the unbounded case, even for A—0
(i.e., free-surface boundary case), and this effect is due
essentially to the kinematic condition (i.e., zero-nor-
mal velocity) at the interface.

For anisotropic particles (e.g., elongated slender
particles), the mobility is, in general, depender:t on the
particle orientation relative to the interface in addition
to the separation distance d between the particle cen-
ter and the interface. The diffusivity tensor for elon-
gated slender particles can be evaluated from the sol-
ution of Yang and Leal [16] who determined the hy-
drodynamic resistance tensors by means of the sl-
ender-body theory. In Figure 3, as an example of this
orientation dependence, the diffusivity coefficient D,
of a slender rod-like particle with the length of axis 2/,
is illustrated as a function of the oblique angle @ bet-
ween the body axis and the interface for two values of

patticle position d7= 1.01 and 2. For each value of % we

Diffusivity Coefficient

0 3 6 9 12 15 18
Separation Distance d/a
Fig. 2. Dimensionless diffusien egefficients,
D,, ~{or D, ) and ,D” , as
wsT/6mus) x TH6ra) xs5T/(6n0a)
a function of the separation distance d/a; -
for Dy, (or Dyy); —, for Dys.
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Fig. 3. Dimensionless diffusion coefficients,
——D—”——. as a function of the orientation
xsT/dmenle)

angle 4; the aspect ratio of the circular cylin-
drical slender body x ==100(i.e., ¢ =0.1887); —,
for d//=1.01;--~, for d/I=2.0;——- for an un-
bounded single fluid case.

include three values of the viscosity ratio, A=0,1 and
. Also shown is the corresponding result for diffusion
in an unbounded single-fluid domain. The quantita-
tive dependence of the diffusivity on the particle confi-
guration (i.e., d and 8) relative to the interface is a con-
sequence of the spatially modified and orientation-de-
pendent hydrodynamic mobility due to the direct hy-
drodynamic interactions between the particle and the
interface.

The instantaneous configuration of an anisotropic
particle can be parametrized by six independent
coordinates. Three of these are required to specify the
position of the particle in physical space. The remain-
ing three are needed to describe the orientation of the
body relative to the interface. Accordingly, one must
describe the diffusion phenomena in a six-dimen-
sional space composed of these two distinct subspaces.
In particular, for a slender rod-like particle, the rota-
tional Brownian diffusion tensor can also be evaluated
from the result of Yang and Leal [16} and is equal to

Dy =xs T(Ky —Kc-Kr' - Ko ) 7', (18)
Thus one could treat the Brownian diffusion of elonga-
ted slender particles by considering both the transla-
tional and the rotational Brownian motions which are
coupled with each other.

This completes illustrative calculations of Brow-
nian diffusion tensor in the vicinity of a flat interface
utilizing the hydrodynamic solutions for Stokes flow. It
is worth commenting that the scope of the present
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analysis can be readily extended to investigate the ef-
fect of Brownian motion on the rheology of a dilute
suspension of rigid particles in a linear shear or a pure
straining flow.
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NOMENCLATURE -
a sphere radius
A random-fluctuation force
c number density of Brownian particles
D : translational diffusion tensor
D, . rotational diffusion tensor
F,(x) : physicochemical interaction force
F*(x) thermodynamic force due to osmotic
pressure
I idemfactor
in . diffusion flux
K. : coupling tensor
K, : rotational resistance tensor
K; : translational resistance tensor
! half-length of slender-body axis
Ly, : length scales of variations in g(x) and
F_ x)
m : particle mass
M : mobility tensor
P : osmotic pressure
P : probability distribution function
r, . radius of slender-body cross-section
t time variable
At averaging time interval
T absolute temperature
U translational velocity
X position vector
X, Xy,X5 : Cartesian coordinate system
g . hydrodynamic resistance tensor
B characteristic value of B
€ slenderness ration[/n 2x]"!
r transition probability function
x aspect ratio of slender particle —
Xg Boltzmann constant Te
A viscosity ratio of two fluids %
u viscosity of fluid
Q rotational velocity
¥ : molecular motion time scale
Tup : viscous relaxation time scale
< > ensemble average
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