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Abstract--The motion of Brown:an particles in the vicinity of a fluid interface is studied by considering 
the spatial modification of Ihe hydrodynamic mobility due to the direct hydrodynamic interactions between 

the particles and the interface. The analysis determines, for a simple model system, the conditions under 
which the simple Fickian form of the diffusion equation can be obtained in the presence of an interface. ]n ad- 
dition, the theory shows that the diffusivity tensor can be evaluated from a knowledge of the mobility tensor 
for steady motion of a particle in Stokes flow. 

INTRODUCTION 

The irregular random motion of small particles sus- 
pended in liquids, known as 'Brownian motion', was 
first described by the English botanist, Robert Brown 
in 1828. Contraversy concerning the o~igin of the 
Brownian motion persisted for many decades and it 
was not until 1905 that Albert Einstein [1] first advanc- 
ed a satisfactory theory, and eventually confirmed the 
molecular nature of matter by relating the Brownian 
motion to the thermal fluctuations of molecules in the 
surrounding fluid. 

Recent years have witnessed an increasing amount 
of interest in the description of Brownian diffusion 
near a rigid wall or a fluid-fluid interface [2-5]. Treat- 
ments of this kind are designed to provide a theoretical 
basis in terms of molecular properties, for understan- 
ding and predicting the various transport coefficients 
that enter into the description of the same processes 
from a macroscopic point of view. Of considerable im- 
portance is prediction and interpretation c,f interphase 
mass-transfer rates in liquid-liquid systems, which are 
usual in many industrial operations, liquid-liquid ex- 
traction being a primary example. However, little is 
known about the effects of a fluid interface on the m,> 
tion of Brownian particles. Indeed, our objective in the 
present study is to investigate the effect of the presence 
of an interface on the motion of Brownian particles by 
employing the general methods of statistical physics in 
conjunction with fundamental fluid mechanics. It is, of 
course, obvious from the point of view of nonequilibr- 
ium thermodynamics that t'he interface will fluctuate 
around equilibrium due to the thermal agitations of 
surrounding fluid molecules, and thcse random 
changes in the interface shape produce random too- 

tions of Brownian particles in the vicinity of the inter- 
face. Further, due to the impulsive motion of a Brow- 
nian particle the interface exhibits also a contimJously 
changing shape which depends on the prior hisl:ory of 
the particle motion and the interface shape at ,earlier 
times. Although the interface deformation is smatl, 
resulting from infinitesimai displacement of the Brow- 
nian particle, the displacement of the particle by inter- 
face relaxation back toward equilibrium may be of the 
same order of magnitude as that initially caused by the 
random inpulse [6]. 

In the present study, we consider a relatively sim- 
ple model system in which the interface remains flat 
non-deforming in spite of the arbitrary motion o1! parti- 
cle in order to explore the validity of Einstein's diffu- 
sion theory for Brownian particles near an interface. 
The 'statistical-mechanical' model underlying the 
theoretical development consists of either spherical or 
elongated slender particles wholly immersed in one of 
the two contiguous fluids. The model is based upon 
the assumption of short-range attractive or repulsive 
forces exerted by the interface on a Brownian particle 
proximate to it. The analysis is carried out using a 
Langevin-type stochastic equation for the Brownian 
particles, and determines the conditions under which 
the normal macroscopic interracial transport theory is 
valid for the model system, wherein a complete des- 
cription of solute mass-transfer is possible down to the 
fine scale of hydrodynamic and physicochemica] inter- 
actions between the solute (i.e., Brownian particles) 
and the solvent-solvent interface. We begin, however, 
with the theoretical framework which has been pre- 
viously proposed for analysis of Brownian motion in 
an unbounded single-fluid domain. Follo'~'ing that we 
proceed to a detailed analysis of Brownian motion in 
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the presence of a fluid interface. 

THEORY OF BROWNIAN MOTION IN AN 
UNBOUNDED DOMAIN 

In his pioneering paper, Einstein [1] showed that 
the irregular motion of uncharged noninteracting par- 
ticles can be modeled as a diffusion and thus the pro- 
bability distribution P(x) of Brownian particles in the 
configuration space x must be governed by the so- 
called Einstein-Smoluchowski diffusion equation 

3 P (x) 
3 ~ - - = V .  [D.  VP(x)~ (1) 

in which D denotes the diffusion coefficient tensor, 
and t is the time variable. In deriving (1), Einstein ass- 
umed that the movements of a Brownian particle 
could be idealized as a Markoff process, in the sense 
that the course which a Brownian particle will take de- 
pends only on the instantaneous values of its physical 
parameters and is entirely independent of its whole 
previous history. Utilizing the solution of the diffusion 
equation (1) with appropriate initial and boundary 
conditions, Einstein also derived the relationship bet- 
ween the diffusion coefficient D and the mean square 
displacement < [ Ax[ ~> of a Brownian sphere: 

< IAx l~>=6DAt  (2) 

The mean square displacement is therefore propor- 
tional to the time interval At.This general relationship, 
(2), in combination with the velocity correlation func- 
tion plays an important role in determining the diffu- 
sion coefficient. 

The diffusion coefficient in (1) and (2), according to 
Einstein's theory., can be determined from the mol- 
ecular-kinetic theory of heat, employing only thermo- 
dynamic concepts and the properties of systems in dy- 
namic equilibrium. For a suspension of uncharged, 
noninteracting particles with spatial number-density 
gradient, the translational diffusion flux at equilibrium 
is evident]y the same as the convective flux resulting 
from the application to each particle of a steady ther- 
modynamic force which is due solely to the existence. 
of osmotic pressure. As far as osmotic pressure is con- 
cerned, solute molecules and suspending Brownian 
particles are identical in their behavior at great dil- 
ution. According to the van't Hoff's law, tile osmotic'. 
pressure pO~ in dilute solution obeys the relationship, 
pO~= c% T, in which c denotes the number-density of 
solute particles that may be regarded as the probability 
density P(x) in the configuration space of a dilute sus- 
pension. Here, ;% is the Boltzmann constant and T is 
the absolute temperature. Then, the thermodynamic 
force, F ~ as a consequence of the concentration gra.- 
dient of Brownian particles, can be derived from the 

osmotic pressure and is given by 

F . . . .  xs TVln {P(x) / (3) 

Thus, the corresponding convective flux is equal to 
-~x) M ix B TVln! P(x)/]. This convective flux is bal- 
anced by the diffusion flux 

jD = - D .V D (x) (4) 

with the diffusivity tensor D related to the hydrody- 
namic mobility tensor M for a particle by the Nernst- 
Planck-Einstein relation: 

D=z~T M.  (5) 

This classical expression for diffusivity of uncharged 
particles has been verified experimentally in many 
types of diffusion. It is noteworthy that Einstein's ap- 
proach employs only the concept of a thermodyrlamic 
driving force on the particle as representation of the di- 
ffusive effect of Brownian motion without taking into 
account the dynamics of the particle motion in the sus- 
pending fluid. 

Brownian motion of individual particles in a ,;ingle 
unbounded fluid domain can also be modeled as a dif- 
fusion process in a dilute suspension by a 'rigorous' 
generalization of the Liouville equation [7] of classical 
dynamics to include Brownian motion. This approach 
to Brownian motion begins with a consideration of the 
equation of motion for a suspended particle, i.e., the 
Langevin equation [8] : 

dU 
- - = - p - U + A ( t )  <6) 
dt 

where U denotes the particle velocity, ,8 is the hydro- 
dynamic resistance tensor and A(t) the random force 
on the particle arising from the thermal agitations of 
surrounding fluid molecules. According to the/,ange- 
vin equation, the influence of the surrounding medi- 
um on the motion of Brownian particle can be sl:flit in- 
to two parts: first, a very rapidly fluctuating part ACt) 
with a molecular motion time scale,r.,(=10-13sec for 
water); and, second, a systematic hydrodynamic fric- 
tion part -]~-U associated with a characteristic time 
scale r,,~, =-~'-' (:=10 ~ sec for a free sphere in ware 0. 
Assuming that r ,  << r,,. <<O(1), as is characteristic of 
Brownian motion, we can introduce time intervals At 
in which the physical parameters such as position, or- 
ientation and velocity of the Brownian particle change 
by infinitesimal amounts, while the number of fluctua- 
tions arising from collisions with surrounding fluid 
molecules remains extremely large: 

r t  << r,~, <<A t ~OI1). (7) 
That a transformation of Liouville equation into the fa- 
mous Fokker-Planck equation should be possible un- 
der these circumstances is apparent when we recall 
that the Brownian movements in a time interval At sa- 
tisfying (7) can be regarded as a Markoff process so that 
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the probability distribution P(U +,AU, x+Ax,  t+At) in 

the phase space governing the probability of occurr- 
ence of U+zXU at time t+At  can be deriwed from the 
distribution P(U, x, t) at the present time and a know- 
ledge of the transition probabilityF(U, zlU) that U suf- 
fers an increment zlU in the time intervalAt. According 
to the Langevin equation (61 

f t+z~t A U = - P  �9 U A t +  A ( s ) d s , A x = U .  At  

(8) 
in which the integral denotes the net acceleration aris- 
ing from fluctuations that a Brownian particle suffers 
in the time interval At. From the molecular-kinetic 
theory, the probability distribution of the integral must 
be Maxwellian and thus it follows at once that the 
transition probability has the Maxwellian distribution 
in terms of AU + ,8 .OAt. With condition (7), it can also 
be expected that a Maxwell-Boltzmann distribution of 
the velocity will be established at all points after time 
intervals At as the result of superposition of a large 
number of random accelerations caused by colhstons 
with surrounding molecules [9,10]. Thus, the Fokker- 
Planck equation in the phase space (U, x) can be ap- 
plied to the configuration space, x, independentIy of 
the velocity space, U, provided that we are interested 
only in the time intervalsAt. Then, integration of the 
Fokker-Planck equation over the velocity space U pro- 
vides us the Emstein-Smoluchowski equation (I), i.e., 
differential equation for the probability distribution, 
P(x}, of Brownian particles in the configuration space, 
x, and yields the s a m e  diffusivity coefficient tensor of 
(5) as Einstein's thermodynamic approach. 

It wiIl be evident, however, that the Langevin eq- 
uation (6) with the instantaneous friction law deter- 
mined from the steady Stokes equation gives only a 
partial picture of the effect of thermal fluctuations in 
the system and predicts a rapid exponential decay on 
the time scale ,sq in the velocity correlation function. 
The first indication of a deficiency in the Langevin eq- 
uation came in numerical simulations of the molecular 
motions in liquids which produced velocity correl- 
ations of spherical particies with a long "tail' decaying 
as t -3,'2 rather than an exponential decaying as pred- 
icted by (6) [11, 12]. Recently, several arLalyses [13, 
14], which allow for the distribution of thermal fluctua- 
tions throughout the fluid, have predicted correctly the 
full velocity correlation as well as the diffusion coeffi- 
cient tensor of (5). Linearity is, however, preserved in 
the governing differential equations for the fluid mo- 
tion, because the velocities remain small enough to 
render the convective terms negligible. It is imporlant 
to realize thai both the classical Langevin method with 
,8 determined from the steady Stokes equat:on and the 
abo,,e corrected approaches lead to exactly the Einste- 

in-Smoluchowski diffusion equation (l) with the s a m e  

diffusion coefficient tensor (5), provided the condition 
(7) is satisfied. 

BROWNIAN MOTION NEAR A PLANE FLUID 
INTERFACE 

Let us begin by considering a model system consis- 
ting of Brownian particles dispersed in a viscous in- 
compressible Newtonian fluid in the semi-infinite do- 
main -oo < )c:~< 0, bounded by a plane fluid interface 
at xa=0 (cf. Fig. 1). In the region x3>0, we suppose 
that there is a second unbounded fluid. The viscosity 
ratio ,a. =~.7 between the two fluids is assumed to be ar- 
bitrary. In addition, we assume that the interface re- 
mains flat and non-deforming. 

The difference between the problem discussed in 
this section and the classical problem of Brownian mo- 
tion in an unbounded domain is the possible existence 
of a short-range force of interaction (attractive or repul- 
sive), Fe.,,(x ) which we assume acts between the particl- 
es and the interface, and the dependence of the hydro- 
dynamic mobility M[i.e. (m8)-1; m is the [)article 
mass] on the configuration of the particle relative to 
the interface (i.e., its position, and if the particle is non- 
spherical, its orientation), as a consequence of hydro- 
dynamic interactions. 

Application of the so-called 'thermodynamic ap- 
proach' that was outlined in the preceding section 
shows that the same relationship holds between the 
mobility and the diffusion tensors as in (5) even in the 
presence of a flat interface in the absence of a physico- 
chemical interaetion force. Further, this approach 
shows that the relevant hydrodynamic mobility is still 
that for steady creeping motions. 

The presence of a short-range physicochemical att- 
raction (or repulsion} between the particles and the in- 
terface will generate steep spatial gradients in the parti- 
cle number density, P(x). The resulting nonuniform 
hydrodynamic interactions between particles will also 
lead to nonisotropie and spatially dependent mobility. 
These indirect interface effects owing to particle-parti- 
cle hydrodynamic interactions will contribute to non- 
isotropy and spatial dependence of the diffusivity. Fur- 
thermore, although successful in determining the rel- 
evant diffusion coefficient of Brownian particles near 
an interface in the absence of a physicochemical inter- 
action, the thermodynamic approach cannot provide 
any conditions Ifor validity of the normal diffusion 
theory in the presence of the physicochemical attrac- 
tion (or repulsion). 

Let us thus turn to the fundamental statistical ap- 
proach in which, the governing differential equation 
for the probability density in the phase space (U, x) is 
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the Liouville equation, in order to explore the condi- 
tions for validity of the diffusion process defined by (4) 
and (5) in the presence of a flat fluid-fluio interface. 
Compared to the case of a single unbounded fluid do- 
main, the Langevin equation is modified by the inter- 
face in that the hydrodynamic mobility is dependent 
upon proximity to the interface (and is anisotropic 
even for sphericai particles) due to the direct and indir- 
ect hydrodynamic interaction effects that were descri- 
bed above, and by the existence in some cases of an 
interface-induced physicochemical force field F,,~(x): 

dU 
d - ~ =  - f l  (x) �9 L'+Fr ( x ) + . 4  (t)  (9) 

When one observes the process of Brownian motion in 
the averaging time intervalsAt satisfying the condition 
of(7), the stochastic movements of a Brownian particle 
can be regarded as a Markoff process. Furlher, if the 
length sclaes characteristic of variations in 6' (x) and 
Fe~x ) are sufficiently large relative to the mean dis- 
placement ~ >  of a Brownian particle in the time 
interval At, the physical parameters 0(x) and F~(x) can 
be approximated as constant duringAt. In effect, there 
is the condition of a fixed 'configuration' over the aver- 
aging period,At, in which the incrementsAx andAU in 
position and velocity of a typical particle are given by 

~tt t-at A U = -  [ f l ( x ) . U - F ~ ( x ) ) A t W  A { s )  ds  

(10) 

with Ax= UAI. The integral in (I0) represents the net 
acceleration that a Brownian particle may suffer dur- 
ing At due to the l~hermal agitations of surrounding 
molecules. We now assert that the invariance of the 
Maxwell-Boltzmann distribution requires that the pro- 
bability of occurrence of different values for the net 
acceleration be governed by the Maxwell distribution 
function, and it allows that the transition-probability 
distribution F(U, AU) is Maxwellian in terms of 

3 U  + [~(x).U-F.~(x)la t. 
A conservative estimate of the length scales of var- 

iations in/3(x) and F J x ) ,  i.e., l,~ and l r , respectively, 
which are allowable for (9) and (10) to be valid, can be 
obtained by using the Stokes resistance for a particle at 
large distances from the interface,ft. The resulting con- 
dition for the fixed configuration is 

l~.l~ >> v - ~  - ~ O  ( ~/ < lA.,ii~> ). (11) 

For an extremely short-range interaction force F~.~(x), 
the condition (11) may not always be satisfied for the 
veD, small Brownian particles (i.e., large solute mol- 
ecules), for which the mean-square displacements in 
the averaging time interva[At can be quite large, if we 
adopt (10) and (11) a generalized Einslein-Smol- 

uchowski equation governing the time evolution of the 
local number density P[x) in the configuration space 
can be derived from the Liouville equation via the 
Fokker-Planck equation by averaging the probability 
distribution P(U, x) in the phase space over the time 
interval At satisfying the condition (7): 

8 P ( x )  
a ~  = 17. (D (x). VP(x)  - M (x) -F ~  (x! P (x)) 

(12) 

in which the mobility aim diffusivity tensors M(x) and 
D(x) refer to a torque-free particle and are related by 
(5). Thus, the simple Fickian form of the diffusion eq- 
uation is obtained in the presence of a flat fluid-fluid 
interface under the conditions (7) and (11), and the dif- 
fusivity tensor can be calculated from a knowledge of 
the mobility tensor for steady motion of a freely rota- 
ting particle in the vicinity of a plane interface. In the 
next section, for an illustrative purpose, we ewduate 
the diffusion tensor for either spherical or elongated 
slender particles near a plane interface. 

D I S C U S S I O N S  

Equations of motion for a rigid particle of arbitrary 
shape in creeping flow can be expressed in general 
terms, provided the interface remains flat, by defining 
the so-called translational resistance tensor Kr ,  the ro- 
tational resistance tensor K n , and the coupling tensor 
Kc [ l  5]. Two fundamental relations exist between the 
translational and rotational velocities and the force 
and torque in terms of these tensors: 

F=KT �9 U§ �9 s (13a) 

T=K,:  �9 U+K~ �9 .O (13b) 

where F and T are the total hydrodynamic force and 
torque, and U and f2are the translational and rota- 
tional velocities, respectively. The various components 
of these tensors are intrinsic geometric properties of 
the particle and have already been determined for 
both a spherical and a slender rod-like particles [16, 
17]. 

In accordance with the usual definition of mobility 
as the 'velocity' imparted to the particle per unit 'force'. 
we are led to define a mobility tensor M by means of 
the expression : 

U = M - F (14a) 

where M is given explicitly by 

M = (K,. - IL~ �9 K~'  �9 Kc ~ _1 (14b) 

for a freely" rotating torque-free particle. 
On the basis of the Nernst-Planck-Einstein equa- 

tion, it is natural to define a d!ffusivity tensor by the 
relation (5). 
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Interface, x = 
/ x2e2 r---_.. 

, , . . . . . .  

i "2/'t t\ //,'/ 

Fig. 1. Definition sketch [or a planar interface. The in- 
stantaneous coordinates of the center of the 
Brownian sphere are x,,(xl,xz, xa) and the points 
lying in a plane parallel to the interface are con- 
veniently represented by the planar position 

vector Xs =xlel+x2e2. 

D = x B T M = x ~ T ~ K r - I ~ '  �9 K i ' '  IQ~ -~ (15) 

For spherical particles, each component of the mobili- 
ty tensor M can be determined from the solution of 
Yang and Leal [17] and the diffusion tensor is thus 
giwm by 

I ~ l l  0 O ~  

D = D~ 0 ' (16a) 

l_0 0 o . J  

For a given coordinate system as in Figure 1, it is ob- 
vious that 

D .  - D , ,  (16b) 

The components D,) are functions of the particle posi- 
tion relative to the interface as a consequence of spa- 
tially modified mobility. In the case of spherically iso- 
tropic particles in an unbounded single-fluid domain, 
Kc=O,  the present result (16) reduces to the conven- 
tional diffusivity tensor 

D = - x B T  1 (171 
6zl~a 

where ,u is the viscosity of the surrounding fluid, a is 
the sphere radius and I denotes the idenlfactor. The 
diffusion tensor (l 7) has been shown to have the phy- 
sical significance of real diffusivities. 

In order to illustrate the qualitative nature of the 
hydrodynamic interaction effect, the components D~I 
and Da: ~ based on the approximate singularity-method 
solution of Yang and Leal [17] are plotted in Figure 2 
as a function of the distance d from the interface for 
2,= 0, 1 and.~. The magnitude of diffusion coefficient, 
D~, is either increased or decreased depending on the 
viscosity ratio 3. owing to the presence of an interface. 

Fluid I 

/ 
/ /  

/ 

Fluid II 

It will be noted from Figure 2 that the effect is a strong 
function of the position relative to the interface arising 
form the spatial modification of hydrodynamic: mobili- 
ty. The decrease in the diffusivity coefficient D~I (or 
D22 ) is established primarily as a consequence of the 
fact that a much more viscous fluid above the interface 
yields a small slip velocity on the interface and thus 
higher velocity gradient above the sphere than below 
it. The 'reversal' m the diffusivity coefficient v~hen the 
upper fluid is nmch less viscous than the lower fluid 
results primarily from the existence of a substantial 
slip velocity on the interface, and a resultant velocity 
gradient above the sphere which is smaller than be- 
low. However, the diffusivity coefficient D33 is decre- 
ased relative to the unbounded case, even for A---,0 
(i.e., free-surface boundary case), and this effect is due 
essentially to the kinematic condition (i.e., zero-nor- 
mal velocity) at the interface. 

For anisotropic particles (e.g., elongated slender 
particles), the mobility is, in general, dependeH on the 
particle orientation relative to the interface in addition 
to the separation distance d between the particle cen- 
ter and the interface. TEe diffusivity tensor for elon- 
gated slender particles can be evaluated from the sol- 
ution of Yang and Leal [16] who determined the hy- 
drodynamic resistance tensors by means of the sl- 
ender-body theory. In Figure 3, as an example of this 
orientation dependence, the diffusivity coefficient D u 
of a slender rod-like particle with the length ol axis 2l, 
is illustrated as a function of the oblique angle 0 bet- 
ween the body axis and the interface for two values of 

d d 
particle position 7 =  1.01 and 2. For each value of~-, we 

2.40 

2.00 ~ 

1'601 l 
~2 r 
o r...) 
>-, 
> 

t ~\ X,=O \ 1.2o ? . . . . . . . . . . . . . . . . . . . . . . . .  i 

0.80 / ~ 0 

0.40 ~ ~  

J 
0.00 

3 6 9 12 15 18 
Separation Distance d/a 

Fig. 2. Dimens ion less  d i f fus ion coeff ic ients ,  

I)11 / Dn and - - ~ -  a s  

a function of the separation distance d / a ;  . . . .  , 

for D u (or D2z); -- ,  for Dan. 
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2.00! i 
:">\ 

.~-'< Z a = 0 ~ . 7  >"I 

"> i '\" ,',' , " r  
1.20 ~ ",',%,~" - - - " i j ( ' /  

1.oo ] \~ 

0.80 ! 
0 o 30 ~ 600 90 ~ 120 ~ 150 ~ 180 ~ 

Orientation Angle O, degree 
Fig. 3. D i m e n s i o n l e s s  d i f fus ion  c o e f f i c i e n t s ,  

Dn , as a function of the orientation 
~ BT/( 4*rla21E ) 
angle 8; the aspect ratio of the circular cylin- 
drical slender body x =100(i .e . , t  =0.1887); - - ,  

for d/I--1.01;----, for d / l = 2 . 0 ; - - ~  for an un- 

bounded single fluid case. 

analysis can be readily extended to investigate the ef- 
fect of Brownian motion on the rheology of a dilute 
suspension of rigid particles in a linear shear or a pure 
straining flow. 
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NOMENCLATURE-  

l 

Jr, 
Kc 
K R 
Kr 
I 

r  

include three values of the viscosity ratio, ,a = 0,1 and 
". Also shown is the corresponding result for diffusion 
in an unbounded single-fluid domain. The quantita- 
tive dependence of the diffusivity on the particle confi- 
guration (i.e., d and 0) relative to the interface is a con- 
sequence of the spatially modified and orientation-de- m 
pendent hydrodynamic mobility due to the direct hy- M 

drodynamic interactions between the particle and the f • 
interface, p 

The instantaneous configuration of an anisotropic r ~ 

particle can be parametrized by six independent t 
coordinates. Three of these are required to specify the At 
position of the particle in physical space. The remain- T 

ing three are needed to describe the orientation of the U 
body relative to the interface. Accordingb,, one must x 
describe the diffusion phenomena in a six-dimen- x i , x2 ,x  3 

sional space composed of these two distinct subspaces. ,8 
In particular, for a slender rod-like particle, the rota.- ,8 
tional Brownian diffusion tensor can also be evaluated 
from the result of Yang and Leal [16] and is equal to P 

x 
DR = z~ T(KR - Kc-Kr I �9 ~ ~" -' (18 )  

Z B 
Thus one could treat the Brownian diffusion of elonga- A 
ted slender particles by considering both the transla- ,u 
tional and the rotational Brownian motions which are ,..,9 
coupled with each other, rt 

This completes illustrative calculations of Brow- 
Zt~ # 

nian diffusion tensor in the vicinity of a flat interface < > 
utilizing the hydrodynamic solutions for St:~kes flow. It 
is worth conmmnting H/at the scope of the present 

sphere radius 
random-fluctuation force 
number density of Brownian particles 
translational diffusion tensor 
rotationa] diffusion tensor 
physicochemical interaction force 
thermodynamic force due to osmotic 
pressure 
idemfactor 
diffusion flux 
coupling tensor 
rotational resistance tensor 
translational resistance tensor 
ha]f-]ength of slender-body axis 
length scales of variations in ,8(x) and 
F~(x)  
particle mass 
mobil ity tensor 
osmotic pressure 
probability distribution function 
radius of slender-body cross-section 
time variable 
averaging time interval 
absolute temperature 
translational velocity 
position vector 
Cartesian coordinate system 
hydrodynamic resistance tensor 
characteristic value of ,8 
slenderness ration[In 2x]-1 
transition probability function l 
aspect ratio of slender particle - -  

To 
Boltzmann constant ,ul 
viscosity ratio of two fluids ~7 
viscosity of fluid 
rotational velocity 
molecular motion time scale 
viscous relaxation time scale 
ensemble average 
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